AGRICULTURAL AND FOOD CHEMISTRY

Volatile Profiles of Dry-Cured Meat Products from Three Different Iberian X Duroc Genotypes

ROSARIO RAMÍREZ AND RAMÓN CAVA*

Tecnología de los Alimentos, Facultad de Veterinaria, Universidad de Extremadura, Cáceres 10071, Spain

Volatile profiles of two lberian dry-cured products, dry-cured loin and ham, from three different lberian \times Duroc genotypes, was assessed. Three groups of 10 pigs, each (5 males and 5 females) from different genotypes, were studied: GEN1 = d lberian $\times 9$ Duroc1; GEN2 = d Duroc1 $\times 9$ lberian; and GEN3 = \triangleleft Duroc2 \times \Diamond Iberian. The genotype Duroc1 (DU1) corresponded to pigs selected for the production of dry-cured meat products (hams, loins, and shoulders), with a high level of fattening, while the genotype Duroc2 (DU2) corresponded to animals selected for meat production. Genotype slightly affected the volatile profiles of both dry-cured meat products, although dry-cured loin from GEN3 showed higher hexanal content. Dry-cured loin showed a volatile profile very different to that found in dry-cured ham. Volatile compounds of dry-cured meat products were mainly originated by lipid and protein degradation. Most of the volatile detected in both meat products came from lipid oxidation such as acids, aldehydes, ketones, alcohols, and hydrocarbons. In addition, a high proportion of volatile compounds from the Maillard reaction was found. Branched aldehydes and some sulfur and nitrogen compounds have their origin in the amino acids degradation by the Strecker reaction, while branched alcohols and acids come from the lipid oxidation of branched aldehydes. Dry-cured ham showed a higher number and a higher level of compounds with origin in protein and lipid degradation than dry-cured loin, which agrees with the longer ripening of the hams (24 months) with respect to the loins (4 months). In dry-cured loins, apart from these compounds, seasoning mixture provides high amount of volatiles, such as terpenes (from paprika and oregano) and sulfur compounds (from garlic), which have great importance in the overall aroma of this product.

KEYWORDS: Volatile; SPME; Duroc; Iberian; dry-cured loin; dry-cured ham.

INTRODUCTION

Iberian dry-cured loin and ham are the most valuable drycured meat products, with an extraordinary consumer acceptance because of their sensory quality, especially their unique and characteristic flavor. The main factors that impact the characteristic and intense flavor of these products are the meat quality as well as the special features of the ripening process, such as its length (14–36 months for dry-cured hams and 3–6 months for dry-cured loins).

The quality of the dry-cured meat products is closely related to the characteristics of the raw material, especially those related to the degree of marbling and the fatty acid composition of fat, such as feeding characteristics, age of animals, and pig breed (1). One of the alternatives more often applied to improve productive parameters of Iberian pig is by the cross with Duroc breed (2). However, different studies have demonstrated that differences between Duroc lines affect productive characteristics and meat and meat products quality (3). Therefore, the Duroc line could affect the aroma of Iberian dry-cured meat products. The manufacture process and ripening of loins and hams influence their flavor. Iberian dry-cured loin is manufactured by rubbing a mixture of curing agents (salt and nitrite) and spices (i.e., Spanish paprika, oregano, and garlic) on the surface of the loins. Then, they are stuffed into casings and subsequently ripened. Previous researchers have established that the spices rubbed onto the surface play an important role in the flavor of dry-cured loin (4,5). Moreover, the antioxidant effect of the spices and nitrites added to dry-cured sausages has been probed by Aguirrezábal et al. (6), and it could affect the development of lipid oxidation reactions. Nonetheless, dry-cured hams are only covered with salt and nitrites and undergo a much longer ripening process; therefore, greater development of lipid and protein degradation reactions would be expected.

A considerable amount of studies have been devoted to describe the volatile flavor compounds of Iberian hams (i.e., 7, δ), while there are a few previous studies about Iberian loin flavor (4, 5). In addition, there are several works about reactions that provide volatile compounds such as lipolysis, lipid oxidation, Maillard reaction and protein and amino acids degradation, and the contribution of microorganisms to the flavor development in Iberian products. However, the comparison between

^{*} Phone: +34 927 257 169. Fax: +34 927 257 110. E-mail: rcava@unex.es.

the volatile profile of Iberian dry-cured loin and dry-cured ham has never been carried out.

Lipid derived compounds are the most abundant compounds in dry-cured meat products (9,10). The extent of lipolysis and lipid oxidation determines the final flavor of dry-cured meat products (11). On the other hand, the Maillard reaction, which occurs between amino compounds and reducing sugars, is one of the most important routes of flavor compounds in dry-cured products (12). Besides, compounds from the Maillard reaction can also react with other components of meat such as aldehydes and other carbonyls formed during lipid oxidation, which react readily with Maillard intermediates. Such interactions contribute to the achievement of the optimum and characteristic flavor of meat products (13).

Therefore, the main objectives of this paper are the characterization of volatile compounds of dry-cured loin and ham and to determine the effect of the genotype on the volatile compounds profile extracted from dry-cured meat products from different Iberian \times Duroc genotypes.

MATERIALS AND METHODS

Animals. Three groups of 10 pigs each one (5 males and 5 females) from different genotypes were studied: GEN1 = σ Iberian × \circ Duroc1; GEN2 = σ Duroc1 × \circ Iberian; and GEN3 = σ Duroc2 × \circ Iberian. The genotype Duroc1 (DU1) corresponded to pigs selected for the production of dry-cured meat products (hams, loins, and shoulders), with a high level of fattening. The genotype Duroc2 (DU2) corresponded to animals selected for meat production, with high percentages of meat cuts and with low carcass fattening. Pigs were intensively raised all together and fed *ad libitum* with a cereal-based commercial fodder. Pigs were randomly slaughtered after 316 days of rearing with 150–165 kg of live weight.

Dry-Curing Process. For the manufacture of the dry-cured loins, the *Longissimus dorsi* muscle (10 loins/genotype) was removed from the carcass and processed into dry-cured loin. The weight of the fresh muscle was 2.5-3.2 kg, and pH values were lower than 6.0. Loins were seasoned by rubbing a mixture of salt, nitrite, olive oil, and spices such as Spanish paprika (*Capsicum annuum, L.*), oregano (*Origanum vulgare, L.*), and garlic (*Altium sativum, L.*). Loins were kept for 4 days at 4 °C to allow the seasoning mixture to penetrate. Then, loins were stuffed into collagen casings and held for 30 days at 4 °C at a relative humidity of ~80%. Finally, loins were ripened for 90 days at ~12 °C and at ~70% relative humidity. Loins were processed for a total dry-curing time of 4 months. For the analysis of volatile compounds in this product, the surface (3 mm) with the pickling mixture was removed.

For the manufacture of dry-cured hams, one ham from each animal was processed (10 hams/genotype). The weight of the fresh ham was 14.0-15.5 kg, and pH values were <6.0. After salting, hams were kept at 0-3 °C and 80-90% relative humidity for ~6 months. Then, the hams were ripened for ~18 months at 10-25 °C and 60-80% relative humidity. Hams were processed for a total dry-curing time of 24 months. After the ripening process, the *Biceps femoris* muscles were removed from the hams for the analysis.

Volatile Analyses. A SPME fiber (Supelco Co., Canada) coated with divinylbenzene–carboxen–poly(dimethylsiloxane) (DVB/CAR/PDMS) 50/30 μ m was used. The sampling technique to extract volatile compounds from the headspace was the following: 0.5 g of meat were minced and placed in 5 mL vials with a silicone stopper, which were previously deodorized by heating them in an electric stove at 80 °C for at least 2 h.

Each sample was analyzed in duplicate. The vial was maintained in a temperature-controlled water bath at 37 °C. The fiber was exposed to the headspace of the sample for 30 min. The analyses were performed on a HP5890GC series II gas chromatograph (Hewlett-Packard) coupled to a mass-selective detector, Agilent model 5973. Volatiles were separated using a 5% phenyl-95% dimethylpolysiloxane column (30 m \times 0.25 mm i.d., 1.0 mm film thickness; Restek). The carrier gas was helium at 18.5 psi, resulting in a flow of 1.6 mL/min at 40 °C. Prior to the analysis, the SPME fiber was preconditioned at 270 °C for 50 min in the gas chromatography injection port. The injection port was in *splitless* mode, and the temperature program was isothermal at 40 °C for 10 min and then raised at the rate of 7 °C seg⁻¹ to 250 °C and held for 5 min. The GC-MS transfer line temperature was 270 °C. The MS operated in the electron impact mode with an electron impact energy of 70 eV, with a multiplier voltage of 1650 V and a collected data rate of 1 scan s^{-1} over a range of m/z 40–300. *n*-Alkanes (Sigma R-8769) were analyzed under the same conditions to calculate the retention indices (RI) for the volatiles. The compounds were identified (i) by comparison with commercial reference compounds (Sigma-Aldrich), (ii) by comparison of RI with those described by Kondjoyan and Berdagué (14) and on the web at http://webbook.nist.gov/, and (iii) by comparison of their mass spectra with those contained in the Wiley library.

Statistical Analysis. The effects of genotype and sex were analyzed using the analysis of variance (ANOVA) procedure of SPSS, version 12.0. A two-way analysis of the variance (genotype and sex) with interaction (genotype \times sex) was carried out. Because genotype \times sex was not significant, this data is not show in the table. HSD Tukey's test was applied to compare the mean values of the genotypes. Mean values and standard errors of the means (SEM) are reported. The relationship between parameters was assessed by the principal component analysis (PCA).

RESULTS AND DISCUSSION

Origin of the Volatile Compounds of Iberian Dry-Cured Meat Products. Fourty-one compounds were isolated in drycured loin (**Table 1**): 5 acids, 4 ketones, 3 alcohols, 11 aldehydes, 3 esters, 2 nitrogen compound, 3 sulfur compounds, 3 terpenes, 4 lineal hydrocarbons, and 3 aromatic hydrocarbons. In dry-cured ham (**Table 2**), a higher number of volatiles than in dry-cured loin was detected (55 compounds): 7 acids, 11 ketones, 8 alcohols, 12 aldehyes, 7 lineal hydrocarbons, 2 esters, 3 nitrogen compounds, 3 sulfur compounds, 1 terpene, and 1 aromatic hydrocarbon. The most abundant compounds in drycured loin were aldehydes (45.7%), followed by terpenes (17.0%) and ketones (10.1%). Similarly, aldehydes (47.7%) had the highest chromatographic area in dry-cured ham, followed by alcohols (24.7%) and ketones (16.7%).

The relative amount of volatile compounds was twice higher in dry-cured ham than in dry-cured loin (**Figure 1**), since the volatile profile of dry-cured ham showed a larger amount of lipid derived compounds (aldehydes, ketones, and alcohols) and Maillard compounds than that of dry-cured loin. In general, differences in the volatile profilse of dry-cured hams and loins are attributable to the different manufacturing process and ripening length. So, the shorter ripening process (4 months vs 24 months) and the lower temperatures during the dry-cured loin processing compared to that of dry-cured hams would probably contribute to a more limited development of the chemical reactions involved in flavor compounds generation in dry-cured loin. As a consequence, the formation of lipid and Table 1. Volatile Compounds (area units (AU) \times 10⁶) Detected in the Headspace of Dry-Cured Loins from Three Different Iberian \times Duroc Genotypes

970 F 502 F 891 F 983 F 983 F 868 F 900 F 900 F 901 F 956 F 1004 F 1208 F 576 T 576 T 699 F 1002 F 878 F 976 T	id. method ^b RI,TI RF,RI,TI RF,RI,TI RF,RI,TI RF,RI,TI RF,RI,TI RF,RI,TI RF,RI,TI RF,RI,TI RF,RI,TI RF,RI,TI RF,RI,TI RF,RI,TI TI TI RF,RI,TI RF,RI,TI TI TI RF,RI,TI TI TI RI,TI	hexanoic acid propan-2-one heptan-2-one octane-2,3-dione hexan-1-ol heptan-2-ol pentanal heptanal (<i>E</i>)-hepten-2-al octanal nonanal decanal 2-methylpentane 3-methylpentane heptane decane methylbenzene 1,3-dimethylbenzene 1,2,3-trimethylbenzene	11.2 K 17.2 2.0 14.3 b A 2.3 6.2 Alo 4.4 201.0 b 7.1b 0.6 4.7 17.4 0.9 Lineal H 1.8 ab 1.8 4.3 1.2 Aromatic 15.1 17.2 1.3 Maillard R	GEN2 dation (55.8%) Acids 12.7 etones 27.9 2.2 28.0 ab lcohols 2.9 5.2 dehydes 8.5 307.9 b 7.1b 2.4 3.6 14.7 0.3 dydrocarbons 3.1 a 7.9 5.1 2.1 Hydrocarbons 44.7 13.9 1.9 eaction (18.1%)	GEN3 16.0 34.0 3.8 55.9 a 3.1 6.4 10.1 651.2 a 14.7 a 1.8 4.9 14.2 0.4 1.2 b 1.5 3.4 1.5 50.8 14.8 1.1	d 14.5 24.8 3.0 31.7 2.6 6.5 6.9 384.8 11.2 1.9 4.7 15.9 0.9 2.3 2.3 4.1 1.9 49.8 15.5 1.6	 ♀ 12.3 28.5 2.4 34.9 2.9 5.3 8.6 400.8 8.4 1.4 4.2 14.9 0.2 1.8 5.2 4.4 1.4 26.3 15.0 1.4 	SEM ^d 1.8 8.4 0.5 5.6 0.2 0.5 1.1 61.3 1.2 0.4 0.6 1.1 0.2 0.3 1.7 0.4 0.3 1.7 0.4 0.3 1.7 0.4 0.3 1.7 0.4 0.3 1.7 0.4 0.3 1.7 0.4 0.3 1.7 0.4 0.3 1.7 0.4 0.3 1.7 0.4 0.5 0.2 0.5 0.2 0.5 0.2 0.5 0.2 0.5 0.2 0.5 0.2 0.5 0.2 0.5 0.2 0.5 0.2 0.5 0.2 0.5 0.2 0.5 0.2 0.5 0.2 0.4 0.5 0.2 0.5 0.2 0.5 0.2 0.5 0.2 0.5 0.2 0.5 0.2 0.4 0.6 1.1 0.2 0.5 0.2 0.5 0.2 0.5 0.2 0.4 0.6 0.1 0.2 0.5 0.4 0.4 0.5 0.2 0.5 0.5 0.2 0.5 0.5 0.2 0.5 0.5 0.2 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	gen 0.615 0.727 0.216 0.008 0.366 0.584 0.104 0.006 0.204 0.676 0.493 0.413 0.039 0.229 0.100 0.546 0.458 0.258 0.745	sex 0.599 0.574 0.657 0.266 0.266 0.266 0.200 0.600 0.600 0.601 0.614 0.142 0.445 0.392 0.730 0.730 0.497 0.382 0.697 0.865
502 F 891 F 983 F 900 F 900 F 900 F 901 F 901 F 1004 F 1208 F 556 T 1208 F 576 T 576 T 699 F 1002 F 878 F 976 T	RI,TI RF,RI,TI RI,TI RF,RI,TI RF,RI,TI RF,RI,TI RF,RI,TI RF,RI,TI RF,RI,TI RF,RI,TI RF,RI,TI RF,RI,TI RF,RI,TI TI RF,RI,TI TI RF,RI,TI TI RF,RI,TI TI TI RI, TI TI	propan-2-one heptan-2-one octane-2,3-dione hexan-1-ol heptan-2-ol pentanal heptanal (<i>E</i>)-hepten-2-al octanal nonanal decanal 2-methylpentane 3-methylpentane heptane decane methylbenzene 1,3-dimethylbenzene	11.2 K 17.2 2.0 14.3 b A 2.3 6.2 Alo 4.4 201.0 b 7.1b 0.6 4.7 17.4 0.9 Lineal H 1.8 ab 1.8 4.3 1.2 Aromatic 15.1 17.2 1.3 Maillard R	Acids 12.7 etones 27.9 2.2 28.0 ab lcohols 2.9 5.2 dehydes 8.5 307.9 b 7.1b 2.4 3.6 14.7 0.3 Hydrocarbons 3.1 a 7.9 5.1 2.1 Hydrocarbons 44.7 13.9 1.9 eaction (18.1%)	34.0 3.8 55.9 a 3.1 6.4 10.1 651.2 a 14.7 a 1.8 4.9 14.2 0.4 1.2 b 1.5 3.4 1.5 50.8 14.8	24.8 3.0 31.7 2.6 6.5 6.9 384.8 11.2 1.9 4.7 15.9 0.9 2.3 2.3 4.1 1.9 49.8 15.5	28.5 2.4 34.9 2.9 5.3 8.6 400.8 8.4 1.4 4.2 14.9 0.2 1.8 5.2 4.4 1.4 26.3 15.0	$\begin{array}{c} 8.4\\ 0.5\\ 5.6\\ \end{array}$	0.727 0.216 0.008 0.366 0.584 0.104 0.006 0.204 0.676 0.493 0.413 0.039 0.229 0.100 0.546 0.458 0.258	0.799 0.574 0.65 0.266 0.266 0.392 0.767 0.200 0.600 0.600 0.614 0.142 0.449 0.730 0.730 0.730 0.730
502 F 891 F 983 F 868 F 900 F 901 F 956 F 1004 F 1107 F 1107 F 1208 F 556 7 576 7 5576 7 5576 7 5576 7 5576 7 599 F 1002 F 878 F 976 7	RI,TI RF,RI,TI RI,TI RF,RI,TI RF,RI,TI RF,RI,TI RF,RI,TI RF,RI,TI RF,RI,TI RF,RI,TI RF,RI,TI RF,RI,TI RF,RI,TI TI RF,RI,TI TI RF,RI,TI TI RF,RI,TI TI TI RI, TI TI	propan-2-one heptan-2-one octane-2,3-dione hexan-1-ol heptan-2-ol pentanal heptanal (<i>E</i>)-hepten-2-al octanal nonanal decanal 2-methylpentane 3-methylpentane heptane decane methylbenzene 1,3-dimethylbenzene	11.2 K 17.2 2.0 14.3 b A 2.3 6.2 Alo 4.4 201.0 b 7.1b 0.6 4.7 17.4 0.9 Lineal H 1.8 ab 1.8 4.3 1.2 Aromatic 15.1 17.2 1.3 Maillard R	Acids 12.7 etones 27.9 2.2 28.0 ab lcohols 2.9 5.2 dehydes 8.5 307.9 b 7.1b 2.4 3.6 14.7 0.3 Hydrocarbons 3.1 a 7.9 5.1 2.1 Hydrocarbons 44.7 13.9 1.9 eaction (18.1%)	34.0 3.8 55.9 a 3.1 6.4 10.1 651.2 a 14.7 a 1.8 4.9 14.2 0.4 1.2 b 1.5 3.4 1.5 50.8 14.8	24.8 3.0 31.7 2.6 6.5 6.9 384.8 11.2 1.9 4.7 15.9 0.9 2.3 2.3 4.1 1.9 49.8 15.5	28.5 2.4 34.9 2.9 5.3 8.6 400.8 8.4 1.4 4.2 14.9 0.2 1.8 5.2 4.4 1.4 26.3 15.0	$\begin{array}{c} 8.4\\ 0.5\\ 5.6\\ \end{array}$	0.727 0.216 0.008 0.366 0.584 0.104 0.006 0.204 0.676 0.493 0.413 0.039 0.229 0.100 0.546 0.458 0.258	0.79 0.57 0.65 0.26 0.39 0.76 0.20 0.60 0.60 0.61 0.14 0.44 0.39 0.73 0.73 0.49
502 F 391 F 383 F 368 F 300 F 30	RI,TI RF,RI,TI RI,TI RF,RI,TI RF,RI,TI RF,RI,TI RF,RI,TI RF,RI,TI RF,RI,TI RF,RI,TI RF,RI,TI RF,RI,TI RF,RI,TI TI RF,RI,TI TI RF,RI,TI TI RF,RI,TI TI TI RI, TI TI	propan-2-one heptan-2-one octane-2,3-dione hexan-1-ol heptan-2-ol pentanal heptanal (<i>E</i>)-hepten-2-al octanal nonanal decanal 2-methylpentane 3-methylpentane heptane decane methylbenzene 1,3-dimethylbenzene	11.2 K 17.2 2.0 14.3 b A 2.3 6.2 Ala 4.4 201.0 b 7.1b 0.6 4.7 17.4 0.9 Lineal H 1.8 ab 1.8 4.3 1.2 Aromatic 15.1 17.2 1.3 Maillard R	12.7 etones 27.9 2.2 28.0 ab lcohols 2.9 5.2 dehydes 8.5 307.9 b 7.1b 2.4 3.6 14.7 0.3 dydrocarbons 3.1 a 7.9 5.1 2.1 Hydrocarbons 44.7 1.9 5.1 2.1	34.0 3.8 55.9 a 3.1 6.4 10.1 651.2 a 14.7 a 1.8 4.9 14.2 0.4 1.2 b 1.5 3.4 1.5 50.8 14.8	24.8 3.0 31.7 2.6 6.5 6.9 384.8 11.2 1.9 4.7 15.9 0.9 2.3 2.3 4.1 1.9 49.8 15.5	28.5 2.4 34.9 2.9 5.3 8.6 400.8 8.4 1.4 4.2 14.9 0.2 1.8 5.2 4.4 1.4 26.3 15.0	$\begin{array}{c} 8.4\\ 0.5\\ 5.6\\ \end{array}$	0.727 0.216 0.008 0.366 0.584 0.104 0.006 0.204 0.676 0.493 0.413 0.039 0.229 0.100 0.546 0.458 0.258	0.799 0.574 0.65 0.266 0.399 0.766 0.200 0.600 0.600 0.614 0.144 0.399 0.733 0.739 0.739 0.739 0.739 0.739 0.739
502 F 391 F 383 F 368 F 300 F 30	RI,TI RF,RI,TI RI,TI RF,RI,TI RF,RI,TI RF,RI,TI RF,RI,TI RF,RI,TI RF,RI,TI RF,RI,TI RF,RI,TI RF,RI,TI RF,RI,TI TI RF,RI,TI TI RF,RI,TI TI RF,RI,TI TI TI RI, TI TI	heptan-2-one octane-2,3-dione hexan-1-ol heptan-2-ol pentanal heptanal (<i>E</i>)-hepten-2-al octanal (<i>E</i>)-hepten-2-al octanal decanal 2-methylpentane 3-methylpentane heptane decane methylbenzene 1,3-dimethylbenzene	K 17.2 2.0 14.3 b A 2.3 6.2 Ald 4.4 201.0 b 7.1b 0.6 4.7 17.4 0.9 Lineal H 1.8 ab 1.8 4.3 1.2 Aromatic 15.1 17.2 1.3 Maillard R	etones 27.9 2.2 28.0 ab lcohols 2.9 5.2 dehydes 8.5 307.9 b 7.1b 2.4 3.6 14.7 0.3 Hydrocarbons 3.1 a 7.9 5.1 2.1 Hydrocarbons 44.7 13.9 1.9 eaction (18.1%)	34.0 3.8 55.9 a 3.1 6.4 10.1 651.2 a 14.7 a 1.8 4.9 14.2 0.4 1.2 b 1.5 3.4 1.5 50.8 14.8	24.8 3.0 31.7 2.6 6.5 6.9 384.8 11.2 1.9 4.7 15.9 0.9 2.3 2.3 4.1 1.9 49.8 15.5	28.5 2.4 34.9 2.9 5.3 8.6 400.8 8.4 1.4 4.2 14.9 0.2 1.8 5.2 4.4 1.4 26.3 15.0	$\begin{array}{c} 8.4\\ 0.5\\ 5.6\\ \end{array}$	0.727 0.216 0.008 0.366 0.584 0.104 0.006 0.204 0.676 0.493 0.413 0.039 0.229 0.100 0.546 0.458 0.258	0.799 0.574 0.65 0.266 0.399 0.766 0.200 0.600 0.600 0.614 0.144 0.399 0.733 0.739 0.739 0.739 0.739 0.739 0.739
891 F 983 F 983 F 900 F 900 F 901 F 905 F 1107 F 1208 F 556 T 556 T 576 T 699 F 1002 F 878 F 976 T 839 F 843 F	RF,RI,TI RI,TI RF,RI,TI RF,RI,TI RF,RI,TI RF,RI,TI RF,RI,TI RF,RI,TI RF,RI,TI RF,RI,TI RF,RI,TI RF,RI,TI RF,RI,TI TI TI TI RF,RI,TI RF,RI,TI TI TI TI TI TI	heptan-2-one octane-2,3-dione hexan-1-ol heptan-2-ol pentanal heptanal (<i>E</i>)-hepten-2-al octanal (<i>E</i>)-hepten-2-al octanal decanal 2-methylpentane 3-methylpentane heptane decane methylbenzene 1,3-dimethylbenzene	17.2 2.0 14.3 b A 2.3 6.2 Ala 4.4 201.0 b 7.1b 0.6 4.7 17.4 0.9 Lineal H 1.8 ab 1.8 4.3 1.2 Aromatic 15.1 17.2 1.3 Maillard R	27.9 2.2 28.0 ab lcohols 2.9 5.2 dehydes 8.5 307.9 b 7.1b 2.4 3.6 14.7 0.3 dydrocarbons 3.1 a 7.9 5.1 2.1 Hydrocarbons 44.7 13.9 1.9 eaction (18.1%)	3.8 55.9 a 3.1 6.4 10.1 651.2 a 14.7 a 1.8 4.9 14.2 0.4 1.5 3.4 1.5 3.4 1.5 50.8 14.8	3.0 31.7 2.6 6.5 384.8 11.2 1.9 4.7 15.9 0.9 2.3 2.3 4.1 1.9 49.8 15.5	2.4 34.9 2.9 5.3 8.6 400.8 8.4 1.4 4.2 14.9 0.2 1.8 5.2 4.4 1.4 26.3 15.0	0.5 5.6 0.2 0.5 1.1 61.3 1.2 0.4 0.6 1.1 0.2 0.3 1.7 0.4 0.3 1.7 0.4 0.3	0.216 0.008 0.366 0.584 0.104 0.006 0.204 0.676 0.493 0.413 0.039 0.229 0.100 0.546 0.458 0.258	0.574 0.65 0.266 0.266 0.206 0.600 0.600 0.68 0.614 0.142 0.445 0.39 0.730 0.730 0.730 0.49
891 F 983 F 983 F 900 F 900 F 901 F 905 F 1107 F 1208 F 556 T 556 T 576 T 699 F 1002 F 878 F 976 T 839 F 843 F	RF,RI,TI RI,TI RF,RI,TI RF,RI,TI RF,RI,TI RF,RI,TI RF,RI,TI RF,RI,TI RF,RI,TI RF,RI,TI RF,RI,TI RF,RI,TI RF,RI,TI TI TI TI RF,RI,TI RF,RI,TI TI TI TI TI TI	heptan-2-one octane-2,3-dione hexan-1-ol heptan-2-ol pentanal heptanal (<i>E</i>)-hepten-2-al octanal (<i>E</i>)-hepten-2-al octanal decanal 2-methylpentane 3-methylpentane heptane decane methylbenzene 1,3-dimethylbenzene	2.0 14.3 b A 2.3 6.2 Alo 4.4 201.0 b 7.1b 0.6 4.7 17.4 0.9 Lineal H 1.8 ab 1.8 4.3 1.2 Aromatic 15.1 17.2 1.3 Maillard R	2.2 28.0 ab lcohols 2.9 5.2 dehydes 8.5 307.9 b 7.1b 2.4 3.6 14.7 0.3 dydrocarbons 3.1 a 7.9 5.1 2.1 Hydrocarbons 44.7 1.9 5.1 2.1	3.8 55.9 a 3.1 6.4 10.1 651.2 a 14.7 a 1.8 4.9 14.2 0.4 1.5 3.4 1.5 3.4 1.5 50.8 14.8	3.0 31.7 2.6 6.5 384.8 11.2 1.9 4.7 15.9 0.9 2.3 2.3 4.1 1.9 49.8 15.5	2.4 34.9 2.9 5.3 8.6 400.8 8.4 1.4 4.2 14.9 0.2 1.8 5.2 4.4 1.4 26.3 15.0	0.5 5.6 0.2 0.5 1.1 61.3 1.2 0.4 0.6 1.1 0.2 0.3 1.7 0.4 0.3 1.7 0.4 0.3	0.216 0.008 0.366 0.584 0.104 0.006 0.204 0.676 0.493 0.413 0.039 0.229 0.100 0.546 0.458 0.258	0.574 0.65 0.260 0.200 0.600 0.600 0.600 0.614 0.142 0.39 0.730 0.730 0.730 0.730 0.730 0.730
868 F 900 F 800 F 901 F 956 F 1004 F 1107 F 556 T 576 T 699 F 1002 F 878 F 976 T 839 F 843 F	RF,RI,TI RI,TI RF,RI,TI RF,RI,TI RF,RI,TI RF,RI,TI RF,RI,TI RT,TI TI RF,RI,TI RF,RI,TI RF,RI,TI TI RF,RI,TI TI TI TI TI TI TI TI TI TI TI TI TI T	hexan-1-ol heptan-2-ol pentanal hexanal heptanal (<i>E</i>)-hepten-2-al octanal nonanal decanal 2-methylpentane 3-methylpentane heptane decane methylbenzene 1,3-dimethylbenzene	A 2.3 6.2 4.4 201.0 b 7.1b 0.6 4.7 17.4 0.9 Lineal H 1.8 ab 1.8 4.3 1.2 Aromatic 15.1 17.2 1.3 Maillard R	lcohols 2.9 5.2 dehydes 8.5 307.9 b 7.1b 2.4 3.6 14.7 0.3 Hydrocarbons 3.1 a 7.9 5.1 2.1 Hydrocarbons 44.7 13.9 1.9 eaction (18.1%)	3.1 6.4 10.1 651.2 a 14.7 a 1.8 4.9 14.2 0.4 1.2 b 1.5 3.4 1.5 3.4 1.5 50.8 14.8	2.6 6.5 384.8 11.2 1.9 4.7 15.9 0.9 2.3 2.3 4.1 1.9 49.8 15.5	2.9 5.3 8.6 400.8 8.4 1.4 4.2 14.9 0.2 1.8 5.2 4.4 1.4 26.3 15.0	0.2 0.5 1.1 61.3 1.2 0.4 0.6 1.1 0.2 0.3 1.7 0.4 0.3 11.5 0.8	0.366 0.584 0.104 0.006 0.204 0.676 0.493 0.413 0.039 0.229 0.100 0.546 0.458 0.258	0.58 0.26 0.20 0.60 0.60 0.68 0.61 0.14 0.44 0.39 0.73 0.73 0.49 0.38 0.69
900 F 696 F 800 F 901 F 956 F 1004 F 1208 F 576 T 576 T 576 T 699 F 1002 F 878 F 976 T 839 F 843 F	RI,TI RI,TI RF,RI,TI RF,RI,TI RF,RI,TI RF,RI,TI RI,TI RI,TI RF,RI,TI RF,RI,TI RI, TI TI RI, TI TI	heptan-2-ol pentanal hexanal heptanal (<i>E</i>)-hepten-2-al octanal nonanal decanal 2-methylpentane 3-methylpentane heptane decane methylbenzene 1,3-dimethylbenzene	2.3 6.2 Alo 4.4 201.0 b 7.1b 0.6 4.7 17.4 0.9 Lineal H 1.8 ab 1.8 4.3 1.2 Aromatic 15.1 17.2 1.3 Maillard R	2.9 5.2 dehydes 8.5 307.9 b 7.1b 2.4 3.6 14.7 0.3 dydrocarbons 3.1 a 7.9 5.1 2.1 Hydrocarbons 44.7 13.9 1.9 eaction (18.1%)	6.4 10.1 651.2 a 14.7 a 1.8 4.9 14.2 0.4 1.2 b 1.5 3.4 1.5 3.4 1.5 50.8 14.8	6.5 6.9 384.8 11.2 1.9 4.7 15.9 0.9 2.3 2.3 4.1 1.9 49.8 15.5	5.3 8.6 400.8 8.4 1.4 4.2 14.9 0.2 1.8 5.2 4.4 1.4 26.3 15.0	0.5 1.1 61.3 1.2 0.4 0.6 1.1 0.2 0.3 1.7 0.4 0.3 11.5 0.8	0.584 0.104 0.006 0.204 0.676 0.493 0.413 0.039 0.229 0.100 0.546 0.458 0.258	0.26i 0.39: 0.76i 0.20i 0.60i 0.60i 0.61i 0.14: 0.39i 0.73i 0.73i 0.73i 0.49 0.38: 0.69i
900 F 696 F 800 F 901 F 956 F 1004 F 1208 F 576 T 576 T 576 T 699 F 1002 F 878 F 976 T 839 F 843 F	RI,TI RI,TI RF,RI,TI RF,RI,TI RF,RI,TI RF,RI,TI RI,TI RI,TI RF,RI,TI RF,RI,TI RI, TI TI RI, TI TI	heptan-2-ol pentanal hexanal heptanal (<i>E</i>)-hepten-2-al octanal nonanal decanal 2-methylpentane 3-methylpentane heptane decane methylbenzene 1,3-dimethylbenzene	6.2 Alo 4.4 201.0 b 7.1b 0.6 4.7 17.4 0.9 Lineal H 1.8 ab 1.8 4.3 1.2 Aromatic 15.1 17.2 1.3 Maillard R	5.2 dehydes 8.5 307.9 b 7.1b 2.4 3.6 14.7 0.3 dydrocarbons 3.1 a 7.9 5.1 2.1 Hydrocarbons 44.7 13.9 1.9 eaction (18.1%)	6.4 10.1 651.2 a 14.7 a 1.8 4.9 14.2 0.4 1.2 b 1.5 3.4 1.5 3.4 1.5 50.8 14.8	6.5 6.9 384.8 11.2 1.9 4.7 15.9 0.9 2.3 2.3 4.1 1.9 49.8 15.5	5.3 8.6 400.8 8.4 1.4 4.2 14.9 0.2 1.8 5.2 4.4 1.4 26.3 15.0	0.5 1.1 61.3 1.2 0.4 0.6 1.1 0.2 0.3 1.7 0.4 0.3 11.5 0.8	0.584 0.104 0.006 0.204 0.676 0.493 0.413 0.039 0.229 0.100 0.546 0.458 0.258	0.26i 0.39: 0.76i 0.20i 0.60i 0.60i 0.61i 0.14: 0.39i 0.73i 0.73i 0.73i 0.49 0.38: 0.69i
696 F 800 F 901 F 956 F 1004 F 1107 F 1208 F 556 7 576 7 699 F 1002 F 878 F 976 7 839 F 843 F	RI,TI RF,RI,TI RF,RI,TI RF,RI,TI RF,RI,TI RI,TI RI,TI RF,RI,TI RF,RI,TI RI, TI TI	pentanal hexanal heptanal (<i>E</i>)-hepten-2-al octanal nonanal decanal 2-methylpentane 3-methylpentane heptane decane methylbenzene 1,3-dimethylbenzene	Ald 4.4 201.0 b 7.1b 0.6 4.7 17.4 0.9 Lineal H 1.8 ab 1.8 4.3 1.2 Aromatic 15.1 17.2 1.3 Maillard R	dehydes 8.5 307.9 b 7.1b 2.4 3.6 14.7 0.3 dydrocarbons 3.1 a 7.9 5.1 2.1 Hydrocarbons 44.7 13.9 1.9 eaction (18.1%)	10.1 651.2 a 14.7 a 1.8 4.9 14.2 0.4 1.2 b 1.5 3.4 1.5 3.4 1.5 50.8 14.8	6.9 384.8 11.2 1.9 4.7 15.9 0.9 2.3 2.3 4.1 1.9 49.8 15.5	8.6 400.8 8.4 1.4 4.2 14.9 0.2 1.8 5.2 4.4 1.4 26.3 15.0	1.1 61.3 1.2 0.4 0.6 1.1 0.2 0.3 1.7 0.4 0.3 11.5 0.8	0.104 0.006 0.204 0.676 0.493 0.413 0.039 0.229 0.100 0.546 0.458 0.258	0.39: 0.76 0.20 0.60 0.68 0.61 0.14: 0.44: 0.39 0.73 0.49 0.73 0.49
800 F 901 F 956 F 1004 F 1107 F 1208 F 556 7 576 7 699 F 1002 F 878 F 976 7 839 F 843 F	RF,RI,TI RF,RI,TI RF,RI,TI RF,RI,TI RI,TI RI,TI TI RF,RI,TI RF,RI,TI TI RI, TI TI	hexanal heptanal (<i>E</i>)-hepten-2-al octanal nonanal decanal 2-methylpentane 3-methylpentane heptane decane methylbenzene 1,3-dimethylbenzene	4.4 201.0 b 7.1b 0.6 4.7 17.4 0.9 Lineal H 1.8 ab 1.8 4.3 1.2 Aromatic 15.1 17.2 1.3 Maillard R	8.5 307.9 b 7.1b 2.4 3.6 14.7 0.3 łydrocarbons 3.1 a 7.9 5.1 2.1 Hydrocarbons 44.7 13.9 1.9 eaction (18.1%)	651.2 a 14.7 a 1.8 4.9 14.2 0.4 1.2 b 1.5 3.4 1.5 50.8 14.8	384.8 11.2 1.9 4.7 15.9 0.9 2.3 2.3 4.1 1.9 49.8 15.5	400.8 8.4 1.4 4.2 14.9 0.2 1.8 5.2 4.4 1.4 26.3 15.0	61.3 1.2 0.4 0.6 1.1 0.2 0.3 1.7 0.4 0.3 11.5 0.8	0.006 0.006 0.204 0.676 0.493 0.413 0.039 0.229 0.100 0.546 0.458 0.258	0.76 0.20 0.60 0.68 0.61 0.14 0.14 0.39 0.73 0.49 0.73 0.49
800 F 901 F 956 F 1004 F 1107 F 1208 F 556 7 576 7 699 F 1002 F 878 F 976 7 839 F 843 F	RF,RI,TI RF,RI,TI RF,RI,TI RF,RI,TI RI,TI RI,TI TI RF,RI,TI RF,RI,TI TI RI, TI TI	hexanal heptanal (<i>E</i>)-hepten-2-al octanal nonanal decanal 2-methylpentane 3-methylpentane heptane decane methylbenzene 1,3-dimethylbenzene	201.0 b 7.1b 0.6 4.7 17.4 0.9 Lineal H 1.8 ab 1.8 4.3 1.2 Aromatic 15.1 17.2 1.3 Maillard R	307.9 b 7.1b 2.4 3.6 14.7 0.3 łydrocarbons 3.1 a 7.9 5.1 2.1 Hydrocarbons 44.7 13.9 1.9 eaction (18.1%)	651.2 a 14.7 a 1.8 4.9 14.2 0.4 1.2 b 1.5 3.4 1.5 50.8 14.8	384.8 11.2 1.9 4.7 15.9 0.9 2.3 2.3 4.1 1.9 49.8 15.5	400.8 8.4 1.4 4.2 14.9 0.2 1.8 5.2 4.4 1.4 26.3 15.0	61.3 1.2 0.4 0.6 1.1 0.2 0.3 1.7 0.4 0.3 11.5 0.8	0.006 0.006 0.204 0.676 0.493 0.413 0.039 0.229 0.100 0.546 0.458 0.258	0.76 0.20 0.60 0.68 0.61 0.14 0.14 0.39 0.73 0.49 0.73 0.49
901 F 956 F 1004 F 1107 F 1208 F 556 T 576 T 699 F 1002 F 878 F 976 T 839 F 843 F	RF,RI,TI RF,RI,TI RF,RI,TI RI,TI RI,TI TI RF,RI,TI RF,RI,TI RI, TI TI	heptanal (<i>E</i>)-hepten-2-al octanal nonanal decanal 2-methylpentane 3-methylpentane heptane decane methylbenzene 1,3-dimethylbenzene	7.1b 0.6 4.7 17.4 0.9 Lineal H 1.8 ab 1.8 4.3 1.2 Aromatic 15.1 17.2 1.3 Maillard R	7.1b 2.4 3.6 14.7 0.3 łydrocarbons 3.1 a 7.9 5.1 2.1 Hydrocarbons 44.7 13.9 1.9 eaction (18.1%)	14.7 a 1.8 4.9 14.2 0.4 1.2 b 1.5 3.4 1.5 50.8 14.8	11.2 1.9 4.7 15.9 0.9 2.3 2.3 4.1 1.9 49.8 15.5	8.4 1.4 4.2 14.9 0.2 1.8 5.2 4.4 1.4 26.3 15.0	1.2 0.4 0.6 1.1 0.2 0.3 1.7 0.4 0.3 11.5 0.8	0.006 0.204 0.676 0.493 0.413 0.039 0.229 0.100 0.546 0.458 0.258	0.200 0.600 0.688 0.614 0.142 0.399 0.731 0.49 0.382 0.699
956 F 1004 F 1107 F 1208 F 556 7 576 7 699 F 1002 F 878 F 976 7 839 F 839 F 843 F	RF,RI,TI RF,RI,TI RI,TI RI,TI TI RF,RI,TI RF,RI,TI RI, TI TI	(E)-hepten-2-al octanal nonanal decanal 2-methylpentane 3-methylpentane heptane decane methylbenzene 1,3-dimethylbenzene	0.6 4.7 17.4 0.9 Lineal H 1.8 ab 1.8 4.3 1.2 Aromatic 15.1 17.2 1.3 Maillard R	2.4 3.6 14.7 0.3 Hydrocarbons 3.1 a 7.9 5.1 2.1 Hydrocarbons 44.7 13.9 1.9 eaction (18.1%)	1.8 4.9 14.2 0.4 1.2 b 1.5 3.4 1.5 50.8 14.8	1.9 4.7 15.9 0.9 2.3 2.3 4.1 1.9 49.8 15.5	1.4 4.2 14.9 0.2 1.8 5.2 4.4 1.4 26.3 15.0	0.4 0.6 1.1 0.2 0.3 1.7 0.4 0.3 11.5 0.8	0.204 0.676 0.493 0.413 0.039 0.229 0.100 0.546 0.458 0.258	0.600 0.68 0.614 0.142 0.39 0.730 0.730 0.49 0.382 0.69
1004 F 1107 F 1208 F 556 7 576 7 699 F 1002 F 878 F 976 7 839 F 839 F 843 F	RF,RI,TI RI,TI TI TI RF,RI,TI RF,RI,TI TI RI, TI TI	octanal nonanal decanal 2-methylpentane 3-methylpentane heptane decane methylbenzene 1,3-dimethylbenzene	4.7 17.4 0.9 Lineal H 1.8 ab 1.8 4.3 1.2 Aromatic 15.1 17.2 1.3 Maillard R	3.6 14.7 0.3 łydrocarbons 3.1 a 7.9 5.1 2.1 Hydrocarbons 44.7 13.9 1.9 eaction (18.1%)	4.9 14.2 0.4 1.2 b 1.5 3.4 1.5 50.8 14.8	4.7 15.9 0.9 2.3 2.3 4.1 1.9 49.8 15.5	4.2 14.9 0.2 1.8 5.2 4.4 1.4 26.3 15.0	0.6 1.1 0.2 0.3 1.7 0.4 0.3 11.5 0.8	0.676 0.493 0.413 0.039 0.229 0.100 0.546 0.458 0.258	0.68 0.61 0.14 0.44 0.39 0.73 0.49 0.49
1107 F 1208 F 556 7 699 F 1002 F 878 F 976 7 839 F 843 F	RI,TI RI,TI TI RF,RI,TI RF,RI,TI RF,RI,TI TI RI, TI TI	nonanal decanal 2-methylpentane 3-methylpentane heptane decane methylbenzene 1,3-dimethylbenzene	17.4 0.9 Lineal H 1.8 ab 1.8 4.3 1.2 Aromatic 15.1 17.2 1.3 Maillard R	14.7 0.3 lydrocarbons 3.1 a 7.9 5.1 2.1 Hydrocarbons 44.7 13.9 1.9 eaction (18.1%)	14.2 0.4 1.2 b 1.5 3.4 1.5 50.8 14.8	15.9 0.9 2.3 2.3 4.1 1.9 49.8 15.5	14.9 0.2 1.8 5.2 4.4 1.4 26.3 15.0	1.1 0.2 0.3 1.7 0.4 0.3 11.5 0.8	0.493 0.413 0.039 0.229 0.100 0.546 0.458 0.258	0.614 0.142 0.391 0.730 0.491 0.382 0.691
1208 F 556 T 576 T 699 F 1002 F 878 F 976 T 839 F 843 F	RI,TI TI RF,RI,TI RF,RI,TI RF,RI,TI TI RI, TI TI	decanal 2-methylpentane 3-methylpentane heptane decane methylbenzene 1,3-dimethylbenzene	0.9 Lineal F 1.8 ab 1.8 4.3 1.2 Aromatic 15.1 17.2 1.3 Maillard R	0.3 Hydrocarbons 3.1 a 7.9 5.1 2.1 Hydrocarbons 44.7 13.9 1.9 eaction (18.1%)	0.4 1.2 b 1.5 3.4 1.5 50.8 14.8	0.9 2.3 2.3 4.1 1.9 49.8 15.5	0.2 1.8 5.2 4.4 1.4 26.3 15.0	0.2 0.3 1.7 0.4 0.3 11.5 0.8	0.413 0.039 0.229 0.100 0.546 0.458 0.258	0.142 0.449 0.397 0.730 0.492 0.382 0.697
556 7 576 7 699 F 1002 F 878 F 976 7 839 F 843 F	TI TI RF,RI,TI RF,RI,TI TI RI, TI TI	3-methylpentane heptane decane methylbenzene 1,3-dimethylbenzene	Lineal F 1.8 ab 1.8 4.3 1.2 Aromatic 15.1 17.2 1.3 Maillard R	lydrocarbons 3.1 a 7.9 5.1 2.1 Hydrocarbons 44.7 13.9 1.9 eaction (18.1%)	1.2 b 1.5 3.4 1.5 50.8 14.8	2.3 2.3 4.1 1.9 49.8 15.5	1.8 5.2 4.4 1.4 26.3 15.0	0.3 1.7 0.4 0.3 11.5 0.8	0.039 0.229 0.100 0.546 0.458 0.258	0.449 0.397 0.730 0.49 0.382 0.69
576 699 1002 878 976 839 843 F	TI RF,RI,TI RF,RI,TI TI RI, TI TI	3-methylpentane heptane decane methylbenzene 1,3-dimethylbenzene	1.8 ab 1.8 4.3 1.2 Aromatic 15.1 17.2 1.3 Maillard R	3.1 a 7.9 5.1 2.1 Hydrocarbons 44.7 13.9 1.9 eaction (18.1%)	1.5 3.4 1.5 50.8 14.8	2.3 4.1 1.9 49.8 15.5	5.2 4.4 1.4 26.3 15.0	1.7 0.4 0.3 11.5 0.8	0.229 0.100 0.546 0.458 0.258	0.39 0.73 0.49 0.38 0.69
576 699 1002 878 976 839 843 F	TI RF,RI,TI RF,RI,TI TI RI, TI TI	3-methylpentane heptane decane methylbenzene 1,3-dimethylbenzene	1.8 4.3 1.2 Aromatic 15.1 17.2 1.3 Maillard R	7.9 5.1 2.1 Hydrocarbons 44.7 13.9 1.9 eaction (18.1%)	1.5 3.4 1.5 50.8 14.8	2.3 4.1 1.9 49.8 15.5	5.2 4.4 1.4 26.3 15.0	1.7 0.4 0.3 11.5 0.8	0.229 0.100 0.546 0.458 0.258	0.397 0.730 0.497 0.382 0.697
699 F 1002 F 878 F 976 7 839 F 843 F	RF,RI,TI TI RI, TI TI	heptane decane methylbenzene 1,3-dimethylbenzene	4.3 1.2 Aromatic 15.1 17.2 1.3 Maillard R	5.1 2.1 Hydrocarbons 44.7 13.9 1.9 eaction (18.1%)	3.4 1.5 50.8 14.8	4.1 1.9 49.8 15.5	4.4 1.4 26.3 15.0	0.4 0.3 11.5 0.8	0.100 0.546 0.458 0.258	0.730 0.49 0.382 0.697
878 F 976 7 839 F 843 F	TI RI, TI TI	methylbenzene 1,3-dimethylbenzene	Aromatic 15.1 17.2 1.3 Maillard R	Hydrocarbons 44.7 13.9 1.9 eaction (18.1%)	50.8 14.8	49.8 15.5	26.3 15.0	11.5 0.8	0.458 0.258	0.382 0.697
878 F 976 7 839 F 843 F	RI, TI TI	1,3-dimethylbenzene	15.1 17.2 1.3 Maillard R	44.7 13.9 1.9 eaction (18.1%)	14.8	15.5	15.0	0.8	0.258	0.697
878 F 976 7 839 F 843 F	RI, TI TI	1,3-dimethylbenzene	15.1 17.2 1.3 Maillard R	44.7 13.9 1.9 eaction (18.1%)	14.8	15.5	15.0	0.8	0.258	0.697
976 7 839 F 843 F	TI		1.3 Maillard R	1.9 eaction (18.1%)						
839 F 843 F		1,2,3-trimethylbenzene	Maillard R	eaction (18.1%)	1.1	1.6	1.4	0.4	0.745	0.863
839 F 843 F										
839 F 843 F										
839 F 843 F				Acids						
839 F 843 F	TI	2-methylpropanoic acid	3.7	4.2	3.9	4.9	3.1	1.0	0.990	0.397
T	RI,TI	2-methylbutanoic acid	18.9	21.2	19.1	23.2	16.6	3.3	0.969	0.333
F	RI,TI	3-methylbutanoic acid	6.2	3.8	4.3	5.7	3.9	0.9	0.455	0.279
F			A	lcohols						
	TI	propan-2-ol	46.8	98.2	43.1	69.3	57.6	14.3	0.222	0.714
			Alo	dehydes						
647 F	RF, TI	acetaldehyde	40.2	6.9	11.3	6.5	30.2	10.8	0.511	0.276
	RF,RI,TI	3-methylbutanal	21.7	23.1	15.8	15.3	24.7	2.7	0.488	0.098
	RF,RI,TI	2-methylbutanal	3.2	1.0	2.5	1.0	3.3	1.0	0.736	0.282
1055 F	RI,TI	benzene acetaldehyde	3.5	3.1	1.7	2.3	3.1	0.6	0.434	0.614
				etones						
712 F	RI,TI	3-hydroxybutan-2-one	78.6	27.5	20.2	67.7	15.8	23.8	0.469	0.229
			Nitroger	n Compounds						
	RI,TI	2,6-dimethylpyrazina	5.0	4.1	4.5	4.5	4.5	0.4	0.701	0.91
٦	TI	ethamina-N,N-diethyl	5.0	3.1	3.7	5.0	2.9	0.9	0.682	0.253
			Microorganisms	Esterification ().8%)					
856 F	RI,TI	butanoic acid 3-methylethyl ester	3.2	4.2	3.2	4.1	3.1	0.4	0.424	0.210
	TI	hexanoic acid 1-methylethyl ester	4.0	4.4	4.3	4.4	4.1	0.4	0.948	0.76
	TI	octanoic acid methyl ester	0.2	1.3	0.5	0.8	0.6	0.2	0.083	0.762
			Sneci	es (25.2%)						
615	TI	acetic acid	19.7	Acids 10.7	11.1	15.8	11.6	3.9	0.546	0.533
						.0.0		0.0	0.040	0.000
864 7	TI	prop-1-ene-3,3'-thiobis		Compounds	10.0	1/ 0	1/0	1.6	0 520	0.00
	RI,TI	2-propenylmethyldisulfide	17.0 3.5	15.4 3.9	12.3 4.0	14.9 4.1	14.8 3.5	0.3	0.520 0.850	0.92 ² 0.316
	RI,TI	dipropenyldisulfide (diallyl disulfide)	51.8	57.9	4.0	4.1	54.0	0.3 3.2	0.850	0.310
	,						00	0.2	3 3 L	0.110
935 F		alpha-pinene	106.3	erpenes 98.6	76.2	93.7	92.9	7.6	0.293	0.91
	RITI	delta-3-carene	79.8	90.0 76.6	68.2	93.7 78.2	92.9 71.5	7.6	0.293	0.91
1039 F	RI,TI RI,TI			6.8	6.2	7.7	6.1	0.7	0.528	0.198

^{*a*} RI = retention index. ^{*b*} Method of identification: RF, mass spectrum and retention time identical with a reference compound; RI, mass spectrum and retention index from literature in accordance; TI, tentative identification by mass spectrum. ^{*c*} GEN1 = IB \times DU1; GEN2 = DU1 \times IB; GEN3 = DU2 \times IB. Different letters in the same row (a, b) indicate significant statistical differences (Tukey's Test, *p* < 0.05). ^{*d*} SEM = standard error of the mean.

Table 2. Volatile Compounds (area units (AU) \times 10⁶) Detected in the Headspace of Dry-Cured Hams from Three Different Iberian \times Duroc Genotypes

			genotype ^c			S	ex	probabilities		
Rl ^a	id. method ^b		GEN1	GEN2	GEN3	්	Ŷ	SEM ^d	gen	sex
			Lipio	d Oxidation (81.6	%)					
770		hutonoia ocid	40.70	Acids	44.00	44.00	44.00	4.50	0 500	0.04
779 970	RI,TI RI,TI	butanoic acid hexanoic acid	13.76 36.89	9.35 24.56	11.38 26.12	11.80 27.40	11.20 31.22	1.59 3.39	0.503 0.333	0.81 0.69
1179	RI,TI	octanoic acid	0.53	1.03	1.95	1.42	0.86	0.66	0.686	0.64
	,			Ketones						
502	RI,TI	propan-2-one	385.50	388.00	345.92	380.75	367.63	33.47	0.903	0.78
600	RF,RI,TI	butan-2-one	11.18	8.60	33.92	11.86	22.70	5.89	0.194	0.35
685	RF,RI,TI	pentan-2-one	39.15	32.74	31.54	36.14	33.04	4.11	0.772	0.62
792 891	RI,TI RF,RI,TI	hexan-2-one heptan-2-one	8.83 37.44	7.26 22.75	3.70 22.12	6.25 24.81	7.16 30.47	1.15 3.40	0.228 0.155	0.76 0.51
983	RI,TI	octane-2,3-dione	19.62	14.77	17.18	16.54	17.84	3.53	0.846	0.87
991	RI,TI	octan-2-one	1.80	0.00	0.00	0.33	0.92	0.42	0.172	0.60
1068	TI	1-etoxi-heptan-2-one	2.20a	0.00b	0.00b	0.66	0.86	0.34	0.008	0.95
1088	TI	non-8-en-2-one	1.80	0.00	0.00	0.38	0.87	0.45	0.228	0.71
1093	RI,TI	nonan-2-one	10.40	0.00	3.15	2.50	6.64	2.53	0.291	0.53
482	TI	ethanol	70.32	Alcohols 174.53	83.77	117.13	103.93	24.75	0.220	0.92
680	RI,TI	pent-1-en-3-ol	3.90	3.26	4.47	4.05	3.65	0.43	0.496	0.62
772	RF,RI,TI	pentan-1-ol	32.29	19.34	27.82	26.98	25.88	2.43	0.093	0.68
868	RF,RI,TI	hexan-1-ol	70.44 a	24.84 b	34.72 b	43.92	43.40	7.78	0.044	0.77
900	RI,TI	heptan-2-ol	1.64	2.31	1.51	1.95	1.72	0.33	0.552	0.74
982	RI,TI	oct-1-en-3-ol	10.90	6.31	10.77	9.11	9.44	1.14	0.206	0.99
696	RI,TI	pentanal	51.00	Aldehydes 46.20	54.89	47.39	53.68	5.71	0.871	0.63
800	RF,RI,TI	hexanal	646.60	563.29	809.43	641.47	694.26	48.65	0.071	0.63
901	RF,RI,TI	heptanal	56.05	41.74	49.26	49.48	48.53	5.03	0.519	0.87
956	RF,RI,TI	(E)-hepten-2-al	4.92 a	1.65 b	2.65 ab	3.24	2.94	0.49	0.012	0.56
1004	RF,RI,TI	octanal	46.26 a	23.40 b	31.24 ab	36.56	30.90	3.85	0.039	0.32
1107 1208	RI,TI	nonanal	61.94 1.17	39.56 0.30	44.51 0.00	53.08 0.51	44.59	4.96	0.151 0.094	0.30 0.87
1200	RI,TI	decanal		neal Hydrocarbon		0.51	0.51	0.22	0.094	0.07
560	ТІ	2-methylpentane	0.97	1.75	1.28	1.59	1.09	0.46	0.685	0.54
578	TI	3-methylpentane	0.37	0.61	1.12	1.13	0.24	0.32	0.671	0.16
699	RF,RI,TI	heptane	7.69	2.02	9.36	6.84	5.64	1.50	0.093	0.49
1002	RF,RI,TI	decane	0.00 1.43	5.90 1.20	1.14 0.00	1.94 0.88	2.85 0.94	1.55	0.247 0.165	0.69 0.95
1215	TI TI	2,6-dimethylundecane 4-methyldodecane	2.64	2.86	0.00	2.30	0.94 1.51	0.32 0.56	0.165	0.95
	TI	2,6-dimethylnonane	15.37	9.95	6.26	11.04	10.35	1.68	0.092	0.77
				matic Hydrocarbo						
878	RI,TI	1,3-dimethylbenzene	2.00 Mailli	3.51 ard Reaction (12.	7.33 7%)	4.31	4.01	1.13	0.175	0.98
			Ividine	Acids	170)					
758	RI,TI	2-methylpropanoic acid	5.97	5.35	10.80	8.38	6.10	1.42	0.289	0.41
839	RI,TI	2-methylbutanoic acid	8.15	11.30	26.27	17.40	12.23	3.42	0.088	0.43
843	RI,TI	3-methylbutanoic acid	1.29 b	0.00 b	12.56 a	6.29	2.33	2.05	0.021	0.24
712	RI,TI	3-hydroxybutan-2-one	1.21	Ketones 3.08	0.45	2.04	1.21	0.56	0.168	0.51
	,			Alcohols						
	TI	propan-2-ol	0.38	30.02	53.49	18.92	35.04	13.10	0.278	0.44
739	RI,TI	3-methylbutan-1-ol	18.13	6.94	10.24	15.72	7.94	3.87	0.420	0.28
	T I	0 methularea engl	10.10	Aldehydes	40.70	40.05	14.50	0.50	0.004	0.00
553 647	TI RF,RI,TI	2-methylpropanal 3-methylbutanal	10.16 126.05	11.07 72.67	19.73 99.12	12.25 111.72	14.59 86.84	2.52 18.00	0.301 0.424	0.62 0.45
657	RF.RI.TI	2-methylbutanal	30.67	30.15	37.29	31.48	33.57	2.44	0.511	0.68
1055	RI,TI	benzene acetaldehyde	8.77	22.92	6.84	18.94	7.21	5.54	0.539	0.37
910	TI	3-methylthiopropanal	1.95	4.16	10.18	1.50	8.99	2.76	0.488	0.16
				rogen Compound						
751	RI,TI	pyridine 2,6-dimethylpyrazine	0.63 1.47	4.75 3.84	1.24 0.00	0.40 2.08	4.09	1.29	0.231	0.11
913 1010	RI,TI TI	2,6-dimethylpyrazine trimethylpyrazine	0.00	3.84 9.70	0.00	2.08 0.96	1.60 6.49	0.66 2.42	0.081 0.097	0.82 0.17
		amonypyrazine		ulfur Compounds		0.00	0.70	2.72	0.001	0.17
920	RI,TI	dihydro-2(3h)-furanone	1.76	1.24	7.97	3.24	3.75	1.24	0.069	0.87
1064	RI,TI	5-ethyldihydro-2(3h)-furanone	4.89 a	1.80 b	0.00 b	2.76	1.87	0.53	0.000	0.11
1099	TI	dipropenyldisulfide	2.28	6.33	1.93	2.92	4.23	1.01	0.152	0.40
				nisms Esterificatio				0.00	0.07	
842 1034	RI,TI TI	butanoic acid 1-methylethyl ester hexanoic acid 1-methylethylester	4.77 a 5.06 a	5.33 a 0.5 b	0.00 b 2.49 ab	3.37 1.96	3.62 3.46	0.83 0.71	0.017 0.032	0.85 0.36
				nown Origin (5.4		1.30	0.40	0.71	0.002	0.00
615	TI	acetic acid	121.43	85.20	110.91	108.35	102.96	18.09	0.693	0.87
1039	RI,TI	1-limonene	2.37	0.00	0.00	0.37	1.27	0.64	0.095	0.60
-										

^a RI = retention index. ^b Method of identification: RF, mass spectrum and retention time identical with a reference compound; RI, mass spectrum and retention index from literature in accordance; TI, tentative identification by mass spectrum. ^c GEN1 = IB \times DU1; GEN2 = DU1 \times IB; GEN3 = DU2 \times IB. Different letters in the same row (a, b) indicate significant statistical differences (Tukey's Test, p < 0.05). ^d SEM = standard error of the mean.

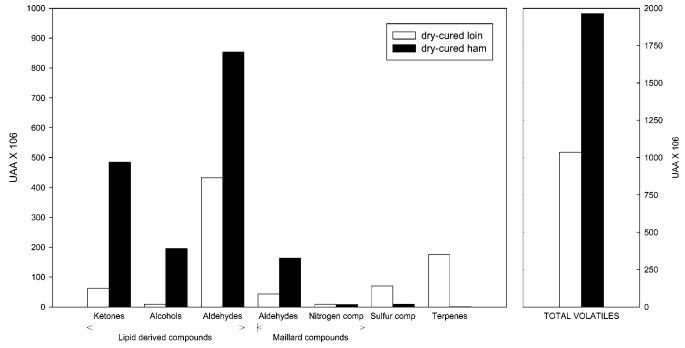


Figure 1. Volatile compounds (total volatile compounds and classified according to their origin and chemical nature) detected in dry-cured loin and ham.

protein derived compounds and the reaction between them to form Maillard volatile compounds would be enhanced in drycured ham. On the other hand, dry-cured loin had a higher content of certain volatile compounds from the pickling mixture, such as sulfur compounds and terpenes, which show strong aromatic notes and could play an important role in the overall aroma notes of this meat product.

Volatile compounds were classified according to their most likely origin in spite of the difficulties to establish the origin of some compounds. Volatile compounds were divided in lipid derived volatile compounds, which comprise acids, ketones, alcohols, aldehydes, and hydrocarbons, whereas volatile compounds formed via the Maillard reaction include heterocyclic nitrogen and sulfur compounds and non-heterocyclic compounds, such as Strecker aldehydes and hydroxyketones, as well as aliphatic disulfides. Besides, in dry-cured loin, volatile compounds from spices were detected, mainly terpenes and some sulfur compounds.

Some of these compounds detected have been previously described by Carrapiso et al. (8) as odor-active compounds in Iberian dry-cured ham such as 2-methylpropanal, 3-methylbutanal, 2-methylbutanal, 2-pentanone, pentanal, hexanal, 2-heptanone, heptanal, 2-heptenal, oct-1-en-3-ol, and octanal.

Lipid derived compounds were the main group of compounds in dry-cured loins and hams. In dry-cured loins, lipid derived compounds accounted for more than 55% of the total volatiles, and they accounted for more than 80% in dry-cured hams.

In general, acids are generated by lipid oxidation reactions. The origin of acetic acid, which was the most abundant acid compound detected in dry-cured ham, is not clear. Some authors have reported that it is originated by the fermentation of sugars by microorganisms (15) and others by the Maillard reaction (16). However, the importance of acetic acid in dry-cured ham may be limited, because this compound was not described as an odoractive compound of Iberian ham (8). In dry-cured loin, the importance of acetic acid characteristic aroma. Mateo et al. (17) have detected a wide variety of acids in Spanish paprika (an ingredient of the rubbing mixture), and especially

acetic acid, which was also one the most abundant compounds detected in dry-cured loin.

The most abundant ketone detected in both products was propan-2-one. 2- Ketones have been abundantly isolated in drycured products, including dry-cured loin (4) and dry-cured ham (9). They have also been associated with the aroma of moldedsurface cheeses (18), so their contribution to the overall cured flavor could be important. 2-Ketones may arise from fatty acids by chemical (autooxidation) or enzymatic (β -oxidation) oxidation of free-fatty acids by molds.

Aliphatic linear alcohols generally result from the degradation of lipid hydroperoxides (19). Dry-cured ham showed a wide variety of these compounds, detected in higher number and content than in dry-cured loin. Muriel et al. (4) reported that alcohols were the most important chemical group in dry-cured loin, in contrast to the present study in which two alcohols from lipid oxidation were detected.

Straight-chain aliphatic aldehydes are typical products of lipid oxidation. They have low odor threshold values and play an important role in the flavor of dry-cured ham and loin (4, 11, 20). Hexanal was the most abundant compound detected in both products. It is considered the main volatile derived from oxidation of n-6 fatty acids such as linoleic and arachidonic acids. The large amount of hexanal found in matured hams is considered a distinctive trait of these products, but in a high extent, this compound has been related to the development of rancid flavors in Iberian ham (11). The level of hexanal in drycured ham was approximately twice higher than in dry-cured loins (673 \times 10⁶ UA vs 380 \times 10⁶ UA), which is in accordance with the longer ripening time and the development in a higher extent of the lipid oxidation reactions in the former. Conversely, heptanal and octanal, which arise from oleic acid, add pleasant notes to the aroma of dry-cured products (8).

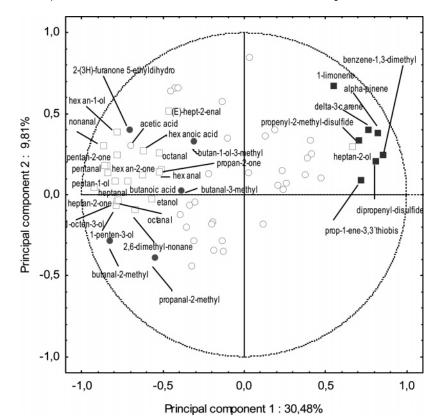
Aliphatic and aromatic hydrocarbons with origin in lipid oxidation reactions (21) were isolated in both dry-cured products. The contribution of these compounds to the aroma of dry-cured products is different. Aliphatic hydrocarbons, because of their high threshold value, are not important contributors to the aroma of these products, while aromatic hydrocarbons, because of their abundance, could play an important role in the aroma of dry-cured loin and ham (22). Several authors have reported the presence of aromatic hydrocarbon compounds in dry-cured loin (4) and ham (23). They may play an important role in the overall flavor of meat products because some of them, such as ethylbenzene and methylbenzene, have been reported to be important to distinguish volatile profiles from different types of dry-cured hams (23).

Volatiles arising from the Maillard reaction accounted for $\sim 18\%$ (dry-cured loin) and $\sim 13\%$ (dry-cured ham) of the total volatiles. Most of them were branched short-chain aldehydes and their corresponding alcohols. The origin of branched aldehydes in dry-cured products is in Strecker degradation reactions of amino acids (12), which is an important pathway associated to the Maillard reaction. In the Strecker reaction, amino acids are decarboxylated and deaminated, forming aldehydes, while dicarbonyls formed in the Maillard reaction are converted to amino ketones or amino alcohols, which can also react with themselves or with other compounds, providing a wide variety of aromatic compounds (13).

Although many studies have been carried out about Iberian products' flavor, volatile compounds with origin in the Maillard reaction have never been quantified. The high proportion of volatiles from the Maillard reaction could be related with the high acceptability of these products, since Maillard compounds, which had very low threshold values, add pleasant aroma notes (13). Previous authors (10) have reported the importance of these compounds and a reduction of the lipid oxidation compounds in dry-cured hams with ripening time, because of the reaction of lipid oxidation products with other compounds, increasing the complexity of the volatile profile. This could be related with the intricacy of overall aroma and with the different aroma notes of the flavor of these products (8). On the other hand, the higher amounts and numbers of compounds with origin in protein degradation in dry-cured ham with respect to the loin show the implication of Maillard compounds in the aroma formation of the latter with respect to the former.

2- and 3-Methylbutanal are products of the Strecker degradation of the amino acids isoleucine and leucine, while benzeacetaldehyde comes from the amino acid phenylalanine (24) and acetaldehyde comes from the amino acid cysteine (13). 2- and 3-Methylbutanal, which were abundantly isolated in dry-cured ham, are linked to long ripening processes and, because of their low threshold values (24) and pleasant "cured" flavors, contribute positively to the dry-cured ham flavor (10).

Some branched-chain acids detected in both meat products, such as 2-ethylpropanoic acid, 3-methylbutanoic acid, and 2-methylbutanoic acid, have been identified as products of the microbial metabolism of valine, leucine, and isoleucine, respectively (25). Some authors have attributed the origin of these compounds to the action of molds, such as in dry-fermented meat products (26). The contribution of molds to the flavor of dry-cured ham has been previously reported (27), since different molds strive on the surface of dry-cured loin and ham. Proteolysis and lipolysis by the endogenous and microbial enzymes seem to play a decisive role in the generation of flavor precursors in dry-cured meat products (27). However, these compounds could also be originated by oxidation from their respective Strecker aldehydes (i.e., 2-methylbutanal would come from the degradation of the amino acid isoleucine, and by oxidation, 2-methylbutanoic acid would be formed). Ventanas et al. (28) reported that, under ripening conditions of dry-cured products, the formation of Strecker compounds is possible without the participation of microorganisms.


Alcohols such as propan-2-ol have their origin in amino acids by means of Strecker degradation reactions (29). 3-Methyl-1butanol seems to play an important role in the overall and characteristic flavor of dry-cured hams (23). Its origin is controversial; some authors (30) have reported that this compound comes from 3-methylbutanal, a Strecker aldehyde, or from the microbial metabolism of leucine. However, Sánchez Peña et al. (23) postulated that its origin was from lipid oxidation, since they detected high levels of 3-methyl-1-butanol in muscle and also in subcutaneous fat where proteins are not abundant. Alcohols and aldehydes derived from Maillard reactions are relatively abundant and characteristic compounds of Iberian hams (23). In this sense, some of the most remarkable volatiles to the characterization of Iberian hams against hams from other breeds were 3-methyl-1-butanol and 3-methylbutanal (23), which are Strecker aldehydes.

Nitrogen and sulfur compounds have great importance in the overall flavor of meat products because of their very low threshold values (24). Except those from spices, nitrogen compounds come from the breakdown of proteins, free amino acids, and nucleic acids, while sulfur containing volatile compounds are derived from sulfur containing amino acids. Some nitrogen compounds, like pyrazines, have been abundantly isolated from dry-cured Iberian products (4, 8). In addition, some furans were detected in dry-cured ham. Furans, because of their very low threshold value and their pleasant aroma (24), should contribute importantly to the desirable aroma of the dry-cured products.

Esters accounted for a small proportion of volatiles in drycured loin (0.8%) and dry-cured ham (0.3%). Most of them were ethyl esters, formed from ethanol and carboxylic acids by the action of microorganisms. Esters add fruity aroma notes (31). They have been isolated in Iberian dry-cured loin (4, 5), in Iberian dry-cured ham (9, 10), and in other dry-cured meat products such as in dry-fermented sausages (26, 31-33).

In dry-cured loin, compounds derived from added spices lessen the volatiles derived from lipid oxidation, microbial metabolism, and Maillard reactions. Consequently, the flavor of the dry-cured loin is the result of a complex equilibrium between volatile compounds derived from both origins. In drycured loin, nearly 25% of volatiles had their origin in spices (Spanish paprika, oregano, and garlic), which were mainly terpenes and, to a lesser extent, aliphatic sulfur compounds. Three sulfur-derived compounds were detected, with dipropenyl disulfide (diallyl disulfide) being the most abundant. A wide variety of sulfur compounds derived from allicin are characteristic of garlic aroma (34), so it is likely that those had an important contribution to the overall aroma of dry-cured loin, since garlic is a potent aromatic ingredient. In addition, sulfur derivatives of propene have also been abundantly detected in dry-cured loin (4) and in other dry-fermented products manufactured with garlic (32, 33).

Terpenes were abundant in dry-cured loin, while they were scarcely detected in dry-cured ham. They have well-defined odors in the literature, so alpha-pinene has been described to add a pine odor, while limonene and carene add lemon notes. In dry-cured ham, the presence of limonene has been associated with the pig diet (9, 23). However, in dry-cured loin, the high content of terpenes suggests the origin in the spices added during the manufacture process (4). Taking into account the compounds of the seasoning mixture of dry-cured loin, terpenes have not been detected in dried Spanish paprika (17) nor in garlic (32), whereas they have been abundantly detected in oregano (35).

Figure 2. Loadings plot after principal component analysis of the volatile compounds from dry-cured loin and dry-cured ham in the plane defined by the two first principal components (PC1 and PC2): (\bigcirc), volatile compounds not identified in the figure; (\bigcirc), volatile compounds with origin in Maillard reaction; (\blacksquare), volatile compounds with origin in species; and (\square), volatile compounds with origin in lipid oxidation.

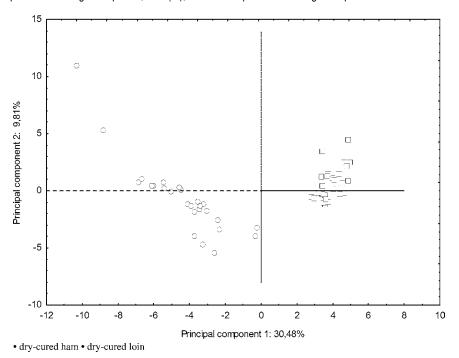


Figure 3. Scores plot after principal component analysis of the individuals in the plane defined by the two first principal components (PC1 and PC2): (O), dry-cured ham; (□), dry-cured loin.

Several pyrazines, methyl branched aldehydes, and their corresponding acids, with origin in the Maillard reaction, have been isolated from manufactured hot Spanish paprika by Mateo et al. (17). These compounds could also contribute, together with those formed from the raw material, to the pleasant flavor of Iberian dry-cured loin.

Volatile Profile of Iberian Dry-Cured Products as Affected by Pig Genotype. A few compounds showed differences between genotypes in both dry-cured products. In dry-cured loin, no differences were found in the amount of compounds derived from the pickling mixture, as all meat products followed the same manufacture process. Consequently, no significant dif-

ferences were found due to genotypes in the amount of terpenes and sulfur compounds. Some lipid-derived compounds such as ketones (octane-2,3-dione), aldehydes (hexanal, heptanal), and hydrocarbons (2-methylpentane) showed significant differences between genotypes. The significant (p < 0.01) differences in hexanal content between genotypes are outstanding, with them being higher in GEN3 than in GEN1 and GEN2. Hexanal has been considered a good indicator of the oxidative state of meat lipids (24) and flavor deterioration, since it is responsible for the rancid aroma in meat products when it is present at high concentrations (11). Thus, those authors found lower hexanal and TBA-RS numbers in Iberian dry-cured hams with less rancid flavors. However, heptanal, which adds pleasant flavors, was higher in GEN3 than in GEN1 and GEN2. The low number of compounds that showed differences between genotypes in drycured loin is in accordance with the results of Muriel et al. (4), who did not find differences in the volatile profiles of dry-cured loins from different Iberian genotypes. The compounds from the seasoning mixture in dry-cured loin have great importance on the overall flavor of this meat product, since sulfur and terpenes compounds were one-fourth of the aroma compounds detected. The spices added in the seasoning could have contributed to disguise the quality differences previously reported in the other parameters analyzed in fresh meat and in dry-cured loins (36, 37), as the high level of the compounds from the seasoning may have reduced the differences in the volatile profile among genotypes.

In dry-cured ham, only eight compounds showed differences between batches. Hams from GEN1 showed significantly highest contents of 1-etoxi-heptan-2-one, hexan-1-ol, (*E*)-hepten-2-al, octanal, hexanoic acid-1-methylethyl ester, butanoic acid-1methylethyl ester, and 5-ethyldihydro-2(3H)-furanone, while hams from GEN2 showed the significantly highest content of butanoic acid-1-methylethyl ester and hams from GEN3 showed the significantly highest content of 3-methyl-butanoic acid. The scarce differences between genotypes could be due to the similar fatty acid composition of intramuscular fat of *Biceps femoris* (*36*), because the changes in the lipids during processing are the main contributors to volatile flavor compounds formation (8, *11*).

Changes in fatty acid composition of IMF affect volatile compounds, especially aldehydes formed during the maturing of the piece (7, 11). Cava et al. (11) reported that hams manufactured from raw meat with lower PUFA contents had lower hexanal content and were perceived as less rancid. Consequently, the differences found in hexanal content in dry-cured loin and the lack of differences in dry-cured ham would agree with the more marked differences of the fatty acids composition in the raw material for the manufacture of these meat products analyzed whenfresh (36).

Multivariate Analysis. A principal component analysis (PCA) was carried out to determine the relationship between the volatile compounds detected. PCA of these variables resulted in five significant factors that accounted for 56.9% of the variability. 30.48% and 9.81% of the variability is explained by principal components (PCs) #1 and #2, respectively.

Figure 2 shows the score plot of the different variables (coefficients of the eigenvectors) for the two first principal components (PC#1 and PC#2). Although all volatiles were included in the analysis, only volatile compounds that explained more variation of the data have been identified in the figure. In this plot, two groups of variables are clearly separated. In the positive axis on the PC#1, far from the origin and explaining an important part of the variation, are located volatile com-

pounds isolated in dry-cured loin, mainly those compounds with origin in species, such as 1-limonene, alpha-pinene, delta-3-carene, dipropenyldisulfide, propenyl-2-methyldisulfide, while lipid derived compounds, such as aldehydes, ketones, and alcohols, and Maillard reactions compounds, such as branched aldehydes, alcohols, and furanones, were located in the negative axis on PC#1.

The distribution of the individuals on the two first PCs (**Figure 3**) shows two separate groups of points, corresponding to dry-cured loin and dry-cured ham, while no differences between genotypes were found (data not shown). Loins were located in the positive area of PC1, the same as terpenes and sulfur compounds in the variables' plot, so loins and terpenes and sulfur compounds are closely linked. On the other hand, hams were located in the negative area of PC1, so they were associated to lipid derived and Maillard compounds. Therefore, the volatile profile was the main factor to characterize adequately dry-cured loins and dry-cured hams because it did not differ between genotypes.

In conclusion, lipid derived volatiles and Maillard compounds were isolated in both meat products, although in dry-cured ham they were more abundant as a result of the longer ripening process and the greater complexity of the compounds formed. Additionally, volatiles with origin in the seasoning mixture were only isolated in dry-cured loin; therefore, the different manufacture process of these meat products characterizes their aromatic profile. However, pig genotype (reciprocal cross and Duroc sire line) slightly affected the volatile profile of Iberian \times Duroc dry-cured meat products.

LITERATURE CITED

- López Bote, C. Sustained Utilization of the Iberian Pig Breed. Meat Sci. 1998, 49 (I), SI7–S27.
- (2) Aparicio, J. B. El cerdo ibérico. In Premio de Investigación Sánchez Romero de Carvajal; Jabugo S.A.: 1987.
- (3) Cilla, I.; Altarriba, J.; Guerrero, L.; Gispert, M.; Martínez, L.; Moreno, C.; Beltrán, J. A.; Guàrdia, M. D.; Diestre, A.; Arnau, J.; Roncalés, P. Effect of different Duroc line sires on carcass composition, meat quality and dry-cured ham acceptability. *Meat Sci.* 2006, 72 (2), 252–260.
- (4) Muriel, E.; Antequera, T.; Petrón, M. J.; Andrés, A. I.; Ruiz, J. Volatile compounds in Iberian dry-cured loin. *Meat Sci.* 2004, 68, 391–400.
- (5) Muriel, E.; Antequera, T.; Petrón, M. J.; Martín, D.; Ruiz, J. Volatile compounds on the surface and within Iberian dry-cured loin. *Eur. Food Res. Technol.* **2004**, *219*, 445–451.
- (6) Aguirrezábal, M. M.; Mateo, J.; Domínguez, M. C.; Zumalacárregui, J. M. The effect of paprika, garlic and salt on rancidity in dry sausages. *Meat Sci.* 2000, 54 (1), 77–81.
- (7) García, C.; Berdagué, J. J.; Antequera, T.; López-Bote, C.; Córdoba, J. J.; Ventanas, J. Volatile components of dry-cured Iberian ham. *Food Chem.* **1991**, *41*, 23–32.
- (8) Carrapiso, A. I.; Ventanas, J.; García, C. Characterization of the Most Odor-Active Compounds of Iberian Ham Headspace. J. Agric. Food Chem. 2002, 50, 1996–2000.
- (9) Sabio, E.; Vidal-Aragón, M. C.; Bernalte, M. J.; Gata, J. L. Volatile compounds present in six types of dry-cured ham from south European countries. *Food Chem.* **1998**, *61* (4), 493–503.
- (10) Ruiz, J.; Ventanas, J.; Cava, R.; Andrés, A.; García, C. Volatile compounds of dry-cured Iberian ham as affected by the length of the curing process. *Meat Sci.* **1999**, *52*, 19–27.
- (11) Cava, R.; Ruiz, J.; Ventanas, J.; Antequera, T. Oxidative and lipolytic changes during ripening of Iberian hams as affected by feeding regime: extensive feeding and alpha-tocopheryl acetate supplementation. *Meat Sci.* **1999**, *52* (2), 165–172.
- (12) Ventanas, J.; Córdoba, J. J.; Antequera, T.; García, C.; López-Bote, C.; Asensio, M. A. Hydrolysis and Maillard reaction during ripening of Iberian ham. J. Food Sci. 1992, 54 (4), 813–815.

- (13) Mottram, D. S. Flavour formation in meat and meat products: A review. *Food Chem.* **1998**, *62* (4), 415–424.
- (14) Kondjoyan, N.; Berdagué, J. L. A Compilation of Relative Retention Indices of the Analysis of Aromatic Compounds; Laboratoire flaveur, station de recherches sur la viande, INRA: Theix, France, 1996.
- (15) Kandler, O. Carbohydrate metabolism in lactic acid bacteria. Antonie van Leeuwenhoek **1983**, 49, 209–224.
- (16) Martins, S.; Jongen, W.; Van Boekel, M. A review of Maillard reaction in food and implications to kinetic modelling. *Trends Food Sci. Technol.* **2001**, *11*, 364–373.
- (17) Mateo, J.; Aguirrezábal, M.; Domínguez, C.; Zumalacárregui, J. M. Volatile compounds in Spanish paprika. J. Food Compos. Anal. 1997, 10, 225–232.
- (18) Curioni, P. M. G.; Bosset J. O. Key odorants in various cheese types as determined by gas chromatography-olfactometry. Review. *Int. Dairy J.* 2002, *12*, 959–984
- (19) Frankel, E. N. Lipid oxidation. Prog. Lipid Res. 1980, 19, 1-22.
- (20) Martín, L.; Timón, M. L.; Petrón, M. J.; Ventanas, J.; Antequera, T. Evolution of volatile aldehydes in Iberian ham matured under different processing conditions. *Meat Sci.* 2000, *54*, 333–337.
- (21) Ansorena, D.; Gimeno, O.; Astiasarán, I.; Bello, J. Analysis of volatile compounds by GC–MS of a dry fermented sausage: chorizo de Pamplona. *Food Res. Int.* 2001, 34, 67–75.
- (22) García, C.; Timón, M. L. Los compuestos responsables del "flavor" del jamón Ibérico. Variaciones en los distintos tipos de jamones. In *Tecnología del jamón Ibérico: de los sistemas tradicionales a la explotación racional del sabor y el aroma*; Ventanas, J., Ed.; Ediciones Mundi-Prensa: Madrid, 2001; pp 391–418.
- (23) Sánchez-Peña, C. M.; Luna, G.; García-González, D. L.; Aparicio, R. Characterization of French and Spanish dry-cured hams: Influence of the volatiles from the muscles and the subcutaneous fat quantified by SPME-GC. *Meat Sci.* 2005, *69*, 635–645.
- (24) Shahidi, F. Flavor of meat and meat products—An overview. In *Flavor of Meat and Meat Products*; Shahidi, F., Ed.; Chapman and Hall: Cornwall, U.K., 1994.
- (25) Stahnke, L. H. Dried sausages fermented with Staphylococcus xylosus at different temperatures and with different ingredient levels. Part II. Volatile components. *Meat Sci.* **1995**, *41* (2), 193– 209.
- (26) Bruna, J. M.; Hierro, E. M.; De la Hoz, L.; Mottram, D. S.; Fernández, M.; Ordóñez, J. A. The contribution of Penicillium aurantiogriseum to the volatile composition and sensory quality of dry fermented sausages. *Meat Sci.* 2001, *59*, 97–107.
- (27) Martín, A.; Córdoba, J. J.; Aranda, E.; Córdoba, M.; Asensio, M. A. Contribution of a selected fungal population to the volatile

compounds on dry-cured ham. *Int. J. Food Microbiol.* **2006**, *110* (1), 8–18.

- (28) Ventanas, S.; Estévez, M.; Delgado, C. L.; Ruiz, J. Phospholipid oxidation, non-enzymatic browning development and volatile compounds generation in model systems containing liposomes from porcine *Longissimus dorsi* and selected amino acids. *Eur. Food Res. Technol.* 2006, in press.
- (29) Flores, M.; Spanier, A. M.; Toldrá, F. Flavour analysis of drycured ham. In *Flavor of meat, meat products and sea-foods*; Shahidi, F.; Blackie Academic and Professional: London, 1998; pp 320–341.
- (30) Ruiz, J.; Muriel, E.; Ventanas, J. The flavour of Iberian ham. In Research advances in the quality of meat and meat products; Toldrá, F., Ed.; Research Signpost: Trivandrum, India, 2002.
- (31) Meynier, A.; Novelli, E.; Chizzolini, R.; Zanardi, E.; Gandemer, G. Volatile compounds of commercial Milano salami. *Meat Sci.* **1999**, *51* (2), 175–183.
- (32) Mateo, J.; Zumalacárregui, J. M. Volatile compounds in chorizo and their changes during ripening. *Meat Sci.* 1996, 44 (4), 255– 273.
- (33) Edwards, R. A.; Ordóñez, J. A.; Dainty, R. H.; Hierro, E. M.; de la Hoz, L. Characterization of the headspace volatile compounds of selected Spanish dry fermented sausages. *Food Chem.* **1999**, *64*, 461–465.
- (34) Lanzotti, V. The analysis of onion and garlic. Review. J. Chromatogr., A 2006, 1112, 3-22.
- (35) Baranauskiené, R.; Venskutonis, P. R.; Dewettinck, K.; Verhé, R. Properties of oregano (Origanum vulgare L.), citronella (Cymbopogon nardus G.) and marjoram (Majorana hortensis L.) flavors encapsulated into milk protein-based matrices. *Food Res. Int.* 2006, *39*, 413–425.
- (36) Ramírez, R.; Cava, R. Carcass composition and meat quality of three different 3 Iberian × Duroc genotype pigs. *Meat Sci.* 2007, 75 (3), 388–396.
- (37) Ramírez, R.; Cava, R. Effect of Iberian X Duroc genotype on dry-cured loin quality. *Meat Sci.* in press; doi:10.1016/ j.meatsci.2006.11.017.

Received for review October 1, 2006. Revised manuscript received December 27, 2006. Accepted December 31, 2006. This work has been financed by the *Consejería de Educación, Ciencia y Tecnología de la Junta de Extremadura: Project 2PR02B018 (DOE 31 de 14 de Marzo de 2002).* R.R. wants to thank the Ministerio Educación, Ciencia y Tecnología, for her grant (FPU).

JF062810L